Coordinate descent algorithm for covariance graphical lasso

نویسنده

  • Hao Wang
چکیده

Bien and Tibshirani (2011) have proposed a covariance graphical lasso method that applies a lasso penalty on the elements of the covariance matrix. This method is definitely useful because it not only produces sparse and positive definite estimates of the covariance matrix but also discovers marginal independence structures by generating exact zeros in the estimated covariance matrix. However, the objective function is not convex, making the optimization challenging. Bien and Tibshirani (2011) described a majorize-minimize approach to optimize it. We develop a new optimization method based on coordinate descent. We discuss the convergence property of the algorithm. Through simulation experiments, we show that the new algorithm has a number of advantages over the majorize-minimize approach, including its simplicity, computing speed and numerical stability. Finally, we show that the cyclic version of the coordinate descent algorithm is more efficient than the greedy version.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical lasso quadratic discriminant function and its application to character recognition

Multivariate Gaussian distribution is a popular assumption in many pattern recognition tasks. The quadratic discriminant function (QDF) is an effective classification approach based on this assumption. An improved algorithm, called modified QDF (or MQDF in short) has achieved great success and is widely recognized as the state-of-the-art method in character recognition. However, because both of...

متن کامل

Sparse inverse covariance estimation with the lasso

We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm— the Graphical Lasso— that is remarkably fast: it solves a 1000 node problem (∼ 500, 000 parameters) in at most a minute, and is 30 to 4000 times faster than competing methods. It also provides a concep...

متن کامل

The Graphical Lasso: New Insights and Alternatives

The graphical lasso [5] is an algorithm for learning the structure in an undirected Gaussian graphical model, using ℓ1 regularization to control the number of zeros in the precision matrix Θ = Σ-1 [2, 11]. The R package GLASSO [5] is popular, fast, and allows one to efficiently build a path of models for different values of the tuning parameter. Convergence of GLASSO can be tricky; the converge...

متن کامل

Sparse inverse covariance estimation with the graphical lasso.

We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides ...

متن کامل

Split Bregman Method for Sparse Inverse Covariance Estimation with Matrix Iteration Acceleration

We consider the problem of estimating the inverse covariance matrix by maximizing the likelihood function with a penalty added to encourage the sparsity of the resulting matrix. We propose a new approach based on the split Bregman method to solve the regularized maximum likelihood estimation problem. We show that our method is significantly faster than the widely used graphical lasso method, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014